Acoustique et Electromagnétisme (AEM) : Nouvelles approches pour la caractérisation sécuritaire des comp

Thèse / Doctorat 25 à 36 mois

Grenoble

Publiée le 21 février 2025

  • Contrat

    Thèse / Doctorat 25 à 36 mois

  • Lieu

    Grenoble

  • Date de début

    Dès que possible

  • Salaire

    Information non renseignée

  • Télétravail

    Non spécifié

CEA illustration
Description du sujet de thèse

Domaine

Défis technologiques

Sujets de thèse

Acoustique et Electromagnétisme (AEM) : Nouvelles approches pour la caractérisation sécuritaire des composants de type SoCs

Contrat

Thèse

Description de l'offre

Des travaux menés au sein du CEA-Leti ont montré que les attaques physiques peuvent être une menace pour les mécanismes de sécurité des SoC (System on Chips). En effet, les injections de fautes par perturbation électromagnétique ont déjà conduit à une escalade de privilèges en s'authentifiant avec un mot de passe illégitime, ou plus récemment ont permis de contourner l'un des plus hauts niveaux de sécurité d'un SoC, qui est le Secure Boot. Cependant, les technologies intégrées dans ce type de cibles sont de plus en plus sophistiquées avec des dispositifs électroniques Package-on-Package (PoP) et des nœuds technologiques inférieurs ou égaux à 7 nm, comme le nouveau Samsung S20. La mise en œuvre de ces attaques nécessite des équipements de pointe non disponibles commercialement à ce jour (sonde de très petit diamètre, générateur d'impulsions de courant transitoire élevé, magnétomètre et capteurs de courant large bande à haute résolution spatiale, etc.). La thèse soutenue en 2022 par Clément Gaine [1] au sein de notre équipe a permis d'étudier plusieurs composants de la chaîne d'injection EM, notamment un élément principal comme la sonde d'injection électromagnétique. D'autres domaines sont à explorer, notamment la chaîne d'injection complète depuis le générateur d'impulsions jusqu'à la création d'une force électromotrice dans la cible, induite par la sonde EM via des gradients de courant très élevés (di/dt). La maîtrise de la chaîne complète permet de concevoir le système d'injection le plus adapté pour caractériser une cible de type smartphone et résoudre les verrous liés à ce type de cible tels que : la microarchitecture complexe, la pile logicielle multicouche, le packaging complexe avec notamment l'empilement de plusieurs composants sur une même puce (PoP).
L'objectif principal de cette thèse est d'étudier une nouvelle approche d'injection EM et son potentiel de contournement de certains mécanismes de sécurité d'un smartphone. Cela permettra de faire évoluer les outils de caractérisation en sécurité matérielle afin de répondre aux besoins croissants de la caractérisation sécuritaire des SoCs. En termes d'exploitation, le domaine FORENSIC est visé pour contourner et/ou compléter les limites des techniques de fouilles légales de données basées sur les vulnérabilités " 0-day " par l'exploitation de failles des implémentations matérielles qui ne peuvent être corrigées sur le même modèle de cible.
Pour atteindre cet objectif, le doctorant devra dans un premier temps caractériser, tester et valider la nouvelle approche d'attaque par commutation ultra-rapide et les moyens de mesures magnétométriques et ampérométriques récemment développés au laboratoire. En parallèle, le doctorant réalisera des travaux bibliographiques et expérimentaux sur le risque physiologique potentiellement lié à l'exposition à des impulsions EM de courte durée. Les résultats serviront à définir de nouveaux protocoles permettant aux opérateurs de réaliser leurs expériences d'injection EM dans un environnement sécurisé et à développer des standards dans ce domaine si nécessaire. Dans un second temps, le doctorant consacrera une partie de ses travaux à la modélisation du flux magnétique transitoire et du transfert de puissance induite dans des cibles à haute ou basse impédance, en s'intéressant à l'impact de l'orientation du champ ainsi que de la polarité de l'impulsion sur le modèle de défaut ou de glitch sur différents types de transistors (NMOS, PMOS, JFET).

[1] https://cea.hal.science/search/index/?q=*&authFullName_s=Cl%C3%A9ment%20Gaine
Plus d'information : https://vimeo.com/441318313 (video projet)

Université / école doctorale

Sciences, Ingénierie, Santé (EDSIS)
Université de Lyon

Localisation du sujet de thèse

Site

Grenoble

Critères candidat

Formation recommandée

Cursus Mathématique, Informatique ou Électronique. Une expérience en lien avec les attaques physiques n'est pas obligatoire, mais appréciable.

Demandeur

Disponibilité du poste

01/10/2024

Personne à contacter par le candidat

ABOULKASSIMI Driss < email supprimé pour raison de sécurité >
CEA
DRT/DSYS/SSSEC/LTSO
880 Route de Mimet
13541
Gardanne
0442616706

Tuteur / Responsable de thèse

NIKOLOVSKI Jean-Pierre < email supprimé pour raison de sécurité >
CEA
DRT/Leti/DSYS/SSSEC/LTSO
880, Route de Mimet
13541 Gardanne
0660283970

En savoir plus

https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&as_ylo=2018&q=Driss+ABOULKASSIMI&btnG=&oq=Driss+
https://www.mines-stetienne.fr/recherche/centres-et-departements/systemes-et-architectures-securises-sas/
https://vimeo.com/441318313

Date limite de candidature

Tant que l’offre est en ligne

Niveau d'étude

Doctorat

Fonction

Electronique & Traitement du signal

Plus d’infos sur l’entreprise

CEA logo

CEA

Nos énergies pour l'avenir