Nouveaux films minces multiferroïques artificiels hybrides à base d'oxynitrures

Thèse / Doctorat 25 à 36 mois

Saclay

Publiée le 3 mars 2025

  • Contrat

    Thèse / Doctorat 25 à 36 mois

  • Lieu

    Saclay

  • Date de début

    Dès que possible

  • Salaire

    Information non renseignée

  • Télétravail

    Non spécifié

CEA illustration
Description du sujet de thèse

Domaine

Physique de l'état condensé, chimie et nanosciences

Sujets de thèse

Nouveaux films minces multiferroïques artificiels hybrides à base d'oxynitrures

Contrat

Thèse

Description de l'offre

Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonée, les revêtements de surface pour l'amélioration de la tenue mécanique des aciers ou la protection contre la corrosion ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. Une compréhension fine de ces aspects requiert des matériaux aussi parfaits que possibles. La production de films minces monocristallins correspondants, est cependant un défi important. Dans ce travail de thèse, des films d'oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L'hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroïques artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que de leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques. Ces dernières seront modélisées grâce à des calculs de structure électronique pour parvenir à une description complète de cette nouvelle classe de matériaux.

Le (la) candidate abordera l'ensemble des techniques d'ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu'un large panel de méthodes de caractérisations basées sur l'exploitation des centres rayonnement synchrotron les plus avancés. Le dichroïsme magnétique des rayons X est particulièrement adapté à cette étude et le projet donnera lieu à une collaboration étroite et/ou un co-encadrement avec la ligne DEIMOS du synchrotron SOLEIL.

Université / école doctorale

Physique en Île-de-France (EDPIF)
Paris Sciences et Lettres

Localisation du sujet de thèse

Site

Saclay

Critères candidat

Formation recommandée

Master M2 et/ou école d'ingénieur

Demandeur

Disponibilité du poste

01/10/2025

Personne à contacter par le candidat

VASCONCELOS Pâmella < email supprimé pour raison de sécurité >
CEA
DES/DRMP/SC2M/LM2T
CEA Saclay
DES / ISAS / DRMP
Service de recherche en Corrosion et Comportement des Matériaux
Laboratoire de Modélisation, Thermodynamique et Thermochimie
Centre de Saclay - Bâtiment 450 - 91191 Gif-sur-Yvette Cedex

01 69 08 77 32

Tuteur / Responsable de thèse

BARBIER Antoine < email supprimé pour raison de sécurité >
CEA
DRF/IRAMIS/SPEC/LNO
Alternative Energies and Atomic Energy Commission CEA/Saclay - DRF/IRAMIS/SPEC/LNO - CNRS UMR 3680, Bât. 772, Orme des Merisiers, F91191 Gif-Sur-Yvette France
01.69.08.39.23

En savoir plus

https://iramis.cea.fr/spec/lno/Pisp/antoine.barbier/
https://iramis.cea.fr/spec/LNO/

Date limite de candidature

Tant que l’offre est en ligne

Niveau d'étude

Niveau Master, MSc ou Programme Grande Ecole

Fonction

Chimie & Procédés

Plus d’infos sur l’entreprise

CEA logo

CEA

Nos énergies pour l'avenir